Celestial mechanics
Part of a series of articles about |
Classical mechanics |
---|
Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data.
As an astronomical field of study, celestial mechanics includes the sub-fields of orbital mechanics, which deals with the launching and orbits artificial satellites, and lunar theory, a specialty which deals with the complications of the orbit of the Moon. Modern celestial mechanics tends to divide between five broad fields of study:
- trajectories of artificial satellites (astrodynamics)
- motions of major planets, minor planets, and natural satellites in the Solar system and other stellar systems and widely spaced multiple-star systems (planetary dynamics)
- the motion of component stars and their planetary systems in closely spaced multiple-star systems and globular clusters (astrodynamics and stellar dynamics)
- flow of stars within and among the bodies of large galaxies, dwarf galaxies, and globular clusters (stellar dynamics and galactic dynamics)
- motions of galaxies and intergalactic dust and gas within galaxy clusters (computational astrophysics)
All of the above fields overlap, but are sometimes treated as separate, especially the study of the motion of stars within galaxies and interactions between whole galaxies, which both tend to rely heavily on fluid mechanics (whole stars being particles of the
No comments:
Post a Comment